The resistance of randomly grown trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomly evolving trees II

Generating function equation has been derived for the probability distribution of the number of nodes with k ≥ 0 outgoing lines in randomly evolving special trees defined in an earlier paper arXiv:condmat/0205650. The stochastic properties of the end-nodes (k = 0) have been analyzed, and it was shown that the relative variance of the number of end-nodes vs. time has a maximum when the evolution...

متن کامل

Randomly evolving trees III

The properties of randomly evolving special trees having defined and analyzed already in two earlier papers (arXiv:cond-mat/0205650 and arXiv: cond-mat/0211092) have been investigated in the case when the continuous time parameter converges to infinity. Equations for generating functions of the number of nodes and end-nodes in a stationary (i.e. infinitely old) tree have been derived. In order ...

متن کامل

Limits of randomly grown graph sequences

3 Convergent graph sequences and their limits 8 3.1 Growing uniform attachment graphs . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Growing ranked attachment graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Growing prefix attachment graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Preferential attachment graph on n fixed nodes . . . . . . . . . . . . ....

متن کامل

Are randomly grown graphs really random?

We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phas...

متن کامل

Preferential attachment in randomly grown networks

We reintroduce the model of Callaway et al. (2001) as a special case of a more general model for random network growth. Vertices are added to the graph at a rate of 1, while edges are introduced at rate δ. Rather than edges being introduced at random, we allow for a degree of preferential attachment with a linear attachment kernel, parametrised by m. The original model is recovered in the limit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2011

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/44/50/505001